સમીકરણ $1 + {\sin ^4}\,x = {\cos ^2}\,3x$ ના $x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ માં ઉકેલો ની સંખ્યા મેળવો

  • [JEE MAIN 2019]
  • A

    $3$

  • B

    $4$

  • C

    $5$

  • D

    $7$

Similar Questions

સમીકરણ  $2^x + x = 2^{sin \ x} +  \sin x$ ના $[0,10\pi ]$  માં કુલ કેટલા ઉકેલો મળે ?

જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$

જો $x = \frac{{n\pi }}{2}$ એ સમીકરણ $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & અસમતા $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$ ને સંતોષે તો 

સમીકરણ $\tan 3x = 1$ નો વ્યાપક ઉકેલ મેળવો.

જો $\sqrt 2 \sec \theta + \tan \theta = 1,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.